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1 Licensing

Under the Artistic License, you are free to use and redistribute this software.

2 Introduction

Supervised predictive analysis method for flow and mass cytometry data which
integrates well known information on cell-signalling responses into the model
fitting process. This method is an extension of the well studied Elastic-Net
algorithm |[2]

Through the prioritization of well understood cell-signalling pathways pre-
dictive models of human immunity can more accurately predict responses than
the agnostic EN method. The prior knowledge refered to are likelihood coef-
ficients generated by a panel of expert immunologists such that features more
consistent with known biology have a higher value with numbers ranging from
0to 1.

A two-layer K-fold Cross-Validation (CV) approach is used to optimize and
estimate model performance in a robust and statistically stringent manner, with
the parameter foldid controlling CV behaviour. The models generated by this
package are regression model’s optimized via grid search during cross-validation



on the provided parameters for alphaGrid, phiGrid, and nlambda. Prediction
useing the generated "iIEN” object will use the mean of out-of-sample models
(which is the collection of optimal models generated for each fold of cross-
validation) to predict new data, with default prioritization of the new data
being the mean of optimal scaling from the K-fold CV.

3 Example

This example uses mass cytometry data previously published by Aghaeepour
et al [I] which studied the gestational age during pregnancy. Using the data
matrix X and the vector of prior knowledge, our task is to estimate the vector
of gestational age at time of sample collection Y.

library (iEN)
install.packages("caret", repos='http://cran.us.r-project.org')
library(caret)
data(test_data)
alphaGrid <- seq(0,1, length.out=2)
phiGrid <- exp(seq(log(1),log(10), length.out=2))
nlambda <- 3
Jlambdas=NULL
ncores <- 2
eval <- "RSS"
family <- "gaussian"
intercept <- TRUE
standardize <- TRUE
center <- TRUE
#define 10-fold cross-validation folds
temp.folds <- createFolds(unique(foldid),k=10)
folds <- vector()
for(k in seq(length(temp.folds))){
folds[which(foldid 7inj, temp.folds[[k]1)] <- k
}
model <- cv_iEN(X, Y, folds, alphaGrid, phiGrid, nlambda, lambdas, priors, ncores, eval, 1
Y.hat <- model@cv.preds
print (model)
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Estimated model performance, as defined by 'eval' parameter, from out of sample predictions

| features| alphal lambdal| phil
| -——————- e e el
| 961 | 0l 0.0000029| 10|
| 961 | 0| 0.2903123] 1]
| 961 | 0| 0.0000028| 10|
| 961 | 0| 0.3337476| 1]



| 961 | 0l 0.0000028| 10|
| 961 | 0| 0.2912042] 1]
I 961 | 0l 0.0000028| 10|
I 961 | 0l 0.2686643| 1]
| 961 | 0l 0.0000026| 10|
| 51| 1] 0.0009299| 1|

> plot(Y,Y.hat, ylab ="Predicted Gestational Age", xlab="Actual Gestational Age")
> abline(fit <- 1Im(Y ~ Y.hat,), col='red')
> legend("bottomright", bty="n", legend=paste("R2 is", format(summary(fit)$adj.r.squared, c
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